Кристаллические структуры и решетки

Самородная медь, Сu Сингония кубическая, представлена гранецентрированным кубом с плотнейшей упаковкой атомов. Атомы меди расположены по углам куба и в центре каждой грани элементарной ячейки образующими правильный тетраэдр [SiO4]4~. Каждый атом кислорода в решетке силикатов одновременно принадлежит двум разным тетраэдрам. Благодаря этому возникают сдвоенные тетраэдры, кольцеобразные замкнутые группы тетраэдров (например, у берилла — двойные кольца), а при дальнейшей группировке атомов— цепи, двойные цепи (например, у пироксенов и амфиболов), двумерные бесконечные слои и трехмерные бесконечные каркасы (например, у полевых шпатов и лейцита).

Галит (каменная соль), NaCl Сингония кубическая, кристаллическая структура представлена ионной решеткой. Ионы натрия (Na+, черные шарики) и ионы хлора (Сl-, белые шарики) попеременно располагаются в углах малых кубов

 

Спайный выколок галита в форме куба, замкнутая спайная форма

 

 

Флюорит (плавиковый шпат), CaF2

Сингония кубическая. Ионы кальция (Са2+) расположены по закону гранецентрированного куба. Ионы фтора (F-) занимают центры всех малых кубов

 

Спайный выколок флюорита в форме октаэдра, замкнутая спайная форма

 

Молибденит (молибденовый блеск), MoS2

Сингония гексагональная, кристаллическая структура слоистая. Ионы молибдена (Мо2+) и ионы серы (S-) образуют плоские сетки. Характер кристаллической решетки обусловливает совершенную спайность, параллельную базальной плоскости

 

Кальцит (известковый шпат), СаСОз

Кристаллическая решетка тригональная. Кристаллическая структура в элементарной ячейке спайного ромбоэдра состоит из ионов кальция (Са2+) и карбонат-ионов [СОз]2-. Оба типа ионов располагаются как бы в гранецентрированных решетках

Спайный выколок кальцита, замкнутая спайная форма (ромбоэдр). Примеры: кальцит, доломит, магнезит, сидерит и др.

Открытая спайная форма, листоватость, свойственная слюдистым минералам. Примеры: мусковит, биотит, хлорит

Примеры структур силикатных минералов (анионные комплексы) На рис. (а) и (б) изображены изолированные группы кремнекислородных тетраэдров, представ-лекные двумя различными видами (а) Отдельный изолированный тетраэдр [SiO4]4-(6) Группа из двух тетраэдров, связанных между собой общим углом, с формулой [Si207]6-

(в) Группа из трех тетраэдров, соединенных в кольцо, с формулой [Si3О9]6-

(г) Группа из четырех тетраэдров, соединенных в кольцо, с формулой [Si4O12]8-

(д) Группа из шести тетраэдров, соединенных в кольцо, с формулой [Si6O18]12-

Многие соединения встречаются в различных структурных типах, так что разные минеральные виды обнаруживают в этом случае одинаковый состав. Такое явление называется полиморфизмом, а химически идентичные минералы, различающиеся структурой кристаллической решетки, — полиморфными модификациями, например пирит и марказит (оба имеют состав FeS2).

Рамки данного карманного справочника позволяют привести лишь ограниченные (но важные!) сведения о многообразии кристаллических форм и о специальных, базирующихся на математической теории принципах классификации кристаллов. Более подробные данные по этому вопросу читатель найдет в разделе «Кристаллографические свойства минералов», написанном д-ром В. Шмицем.

Для графических построений и в классификационных целях минералоги и кристаллографы используют кристаллографические оси и осевые системы. В зависимости от длины отрезков, отсекаемых на кристаллографических осях, и взаимного расположения этих осей различают семь осевых систем.

Триклинная сингония. Три оси разной длины пересекаются под косыми углами; например известково-нат-риевые полевые шпаты (плагиоклазы).

Моноклинная сингония. Две оси разной длины пересекаются под косым углом, третья ось составляет с ними прямой угол, например ортоклаз, авгит, слюда и гипс.

Ромбическая сингония. Три оси разной длины пересекаются под прямыми углами; например оливин, энста-тит, топаз, ангидрит, барит и сера.

Тетрагональная сингония. Два отрезка оси одинаковой длины пересекаются под прямым углом, третья ось перпендикулярна им, и отсекаемый на ней отрезок имеет иную длину, например рутил, циркон, касситерит и халькопирит.

Тригональная сингония. Три отрезка осей равной длины пересекаются в одной плоскости под углом 60°, третья ось перпендикулярна этой плоскости, и отсекаемый на ней отрезок имеет иную длину, например кальцит.

Гексагональная сингония. Положение осей аналогично их положению в тригональной сингонии, например кварц (высокотемпературный), берилл, апатит, снег и лед.

Кубическая сингония. Три равновеликие оси пересекаются под прямым углом, например каменная соль, алмаз, магнетит, пирит, хромит, галенит, золото и гранат.

Для определения сингонии кристалла важным признаком является форма выделения минерала. Изомет-ричные, порой округленные зерна минерала, вкрапленные в агрегат других минералов, позволяют предположить для него кубическую сингонию. Так выглядит, например, гранат в слюдистом сланце или лейцит в фоно-литах, трахитах или базальтах. У большинства кристаллов гексагональной, тригональной, тетрагональной, ромбической, моноклинной или триклинной сингонии преобладает призматический габитус. Грани, ориентированные параллельно оси с, обычно называют призматическими. Хорошо образованные призматические грани характерны, например, для монокристаллов кварца, берилла, топаза, турмалина, кальцита, арагонита, дистена, ставролита и др. Другие формы этих сингонии могут иметь таблитчатый или пластинчатый габитус, параллельный оси с.

У хорошо образованных некубических кристаллов важны базальные и пирамидальные грани, определяющие различия их облика. Для высокотемпературного кварца характерна гексагональная бипирамида, для апатита характерны притупления базисной грани. Для моноклинного ортоклаза характерны резко выраженные грани диэдра, расположенные параллельно оси а. К этим главным граням часто присоединяются специфичные для разных сингоний второстепенные грани, усложняющие форму кристалла. Так, у кристаллов тригонального кварца наряду с гранями тригональной призмы присутствуют грани трапецоэдра, у гексагонального апатита и берилла — многочисленные второстепенные грани и т. д. Все эти кристаллографические признаки минералов имеют особое значение. Они часто позволяют установить, при каких физико-химических условиях образовался тот или иной минерал. Вместе с тем появление определенных граней может быть характерно для минерала из конкретного месторождения и может указывать на определенный минеральный парагенезис.

Эти наблюдающиеся на кристаллах минералов комбинации граней создают его характерную естественную огранку, а общая конфигурация определяет его габитус. Так, например, апатиты, образовавшиеся в диапазоне температур 550—300 °С, кристаллизуются в виде корот-копризматических кристаллов, а апатиты в гранитах, образующиеся при температурах выше 700 °С, имеют тонкоигольчатый габитус. Аналогичная картина наблюдается и в случае калиевых полевых шпатов: полевые шпаты, являющиеся составной частью магматических пород, образуются при температурах выше 700°С (санидин, ортоклаз), пегматитовые калиевые полевые шпаты— примерно при 600—550°С (ортоклаз), а гидротермальные, такие, как адуляр, кристаллизуются в интервале температур 300—100 °С; соответственно различен и облик этих полевых шпатов, возникших в различной геологической обстановке.

находится в рубрике: Общие вопросы о минералах.

Смотрите информацию о минералах:

  • ЭПИДОТ
  •   Са2(А1, Fe)3[Si207l [Si04]0[OH] Греч, «эпидос» — приращение (название указывает на особенности формы кристаллов)1 Синоним: пистацит Химический состав. Окись кальция (СаО) 23,5%, оюись алюминия (А12О3) 24,1%, окись железа (Fe2O3) 12,6%,
  • КРОКОИТ
  •   РbCrO4   Греч, «крокос» — шафран (по цвету красно-желтого рыльца цветка Crocus sativus) Синоним: красная свинцовая руда Химический состав. Окись свинца (РЬО) 68,9%, окись хрома (СгОз) 31,1%. Цвет. Яркий
  • КАССИТЕРИТ
  •   SnO2   Греч. «касситерос» — олово Синоним: оловянный камень Химический состав. Олово (Sn) 78,8%, кислород (О) 21,2%, примеси железа, тантала, титана, ниобия, марганца, циркония, вольфрама. Цвет. Коричневый, черный, серый,
  • Спайность минералов
  • Спайность минералов - это способность образовывать выколки (по трещинам), ограниченные ровными плоскостями, при механическом воздействии (удар, давление, растяжение). Поверхности спайности расположены параллельно возможным граням кристалла. Возникшие таким образом геометрически правильные тела